
Catching space leaks at compile-time using
th-deepstrict

Teo Camarasu

CircuitHub

6th of June 2025

Haskell Implementer’s Workshop 2025

Catching space leaks caused by excessive laziness at
compile-time

▶ Avoiding space leaks is important.

▶ Understanding lazy evaluation is helpful but not necessary.

▶ We propose an idiom: Stateful XOR Lazy

▶ And a tool to enforce it: th-deepstrict

Types of Space Leak

A space leak is when more memory is used than necessary1.

▶ Bounded by X: memory is kept until event X

▶ Unbounded: memory is never released

Memory

Time

necessary

bounded leak

unbounded leak

1Leaking Space: Eliminating memory hogs, Neil Mitchell, ACM Queue 2013

Causes of Space Leaks

Space leaks can be caused by:

▶ Excessive laziness

▶ Inappropriate datatype usage, eg, Lists have a linear overhead,
Vector has a constant overhead.

▶ Function closures

▶ Stack usage

▶ And others!

Laziness

▶ Laziness means work is only done when demanded.

▶ This comes with a cost: deferred work must be represented
using a thunk. A thunk keeps alive all data needed to do the
work.

Example: an all too lazy sum

The classic space leak from laziness: a lazy left fold

foldl (+) 0 [1..1000]

Expectation: Constant
Reality: Linear

Example: an all too lazy sum

The solution is to use a strict left fold:

foldl' (+) 0 [1..1000]

Expectation: Constant
Reality: Constant

Example: a too clever average

Calculates average with just one traversal! But it has a space leak.

data State = State { sum :: Int, length :: Int }

step :: State -> Int -> State

step old x =

State { sum = sum old + x, length = length old + 1}

finish :: State -> Int

finish final = sum final `div` length final

finish $

foldl' step (State 0 0) [0..10000]

While the top-level State is evaluated, the values in the fields are
not.

Example: a clever average (solution)

Solution make the fields strict.

data State = State { sum :: !Int, length :: !Int }

Moral: the avoid of laziness you need deep strictness.
We want normal form not weak head normal form.

Unbounded leaks

▶ So far, we have only seen bounded space leaks.

▶ Let’s look at an unbounded leak.

Unbounded leaks

Web server version, storing our original State in an IORef.

data State = State { sum :: Int, length :: Int }

main = do

ref <- newIORef (State 0 0)

let handleAdd x =

modifyIORef' ref (\old -> step old x)

let handleGetAverage =

readIORef ref >>= print . finish

...

Unbounded space leak.

Lazy and stateful

▶ All of these examples are both lazy and stateful.

▶ Stateful because we have a sequence of values computed
where the next is computed from the current.

▶ Lazy because we don’t fully evaluate evaluate the current
value.

▶ Both are necessary for the space leak.

▶ Laziness creates thunks.

▶ Statefulness links them up into a chain.

Statefulness

Many forms of statefullness:

▶ Recursion, folds, loops, etc

▶ The State monad

▶ Mutable state IORef, MVar, TVar, etc

Stateful AND Lazy implies space leak

Stateful XOR Lazy

Abolish your state

▶ Stateful code should be kept to a minimum but is unavoidable.

▶ Externalize state in a database

▶ If you need state, make it as local as possible.

▶ Global state can lead to unbounded space leaks.

Stateful code should be deep strict

If code is necessarily stateful, then make it deep strict.

A datatype is deep strict iff:

▶ All fields of all constructors are strict.

▶ Types of all fields are deep strict.

th-deepstrict

▶ Open-sourced by Tracsis

▶ Non-trivial Template Haskell (upstreamed into th-abstraction)

▶ Recursively traverse your datatype and find lazy fields/types.

▶ Allows overriding inferred strictness of datatypes.

▶ Supports golden/ratchet tests.

th-deepstrict: Example

> assertDeepStrict =<< [t|State|]

Main.State

is not Deep Strict, because:

Main.State

con Main.State

field Main.sum is lazy

field Main.length is lazy

|

5 | assertDeepStrict =<< [t|State|]

|

Packages for strict code

▶ strict-wrapper by Tom Ellis
(See: Make Invalid Laziness Unrepresentable)

▶ strict (strict Maybe, etc)

▶ strict-containers

▶ Strict vector problem

Alternatives: deepseq

We can use rnf from the deepseq package.
Issues:

▶ Error prone: requires manual annotation.

▶ Expensive: must traverse entire datatype, O(n)

Alternatives: nothunks

nothunks by Edsko de Vries allows writing unit tests to check for
thunks.
Issues:

▶ Requires test coverage: tough when state space is large.

▶ Isn’t checked at compile-time.

▶ Great fit for data structures.

▶ Stateful XOR lazy

▶ Enforce this with th-deepstrict

	Introduction
	Space Leaks
	Excessive Laziness
	Stateful XOR Lazy
	Deep strict datatype
	th-deepstrict
	Conclusion

