Catching space leaks at compile-time using
th-deepstrict

Teo Camarasu

CircuitHub
6" of June 2025

Haskell Implementer's Workshop 2025

Catching space leaks caused by excessive laziness at
compile-time

» Avoiding space leaks is important.

» Understanding lazy evaluation is helpful but not necessary.
» We propose an idiom: Stateful XOR Lazy

» And a tool to enforce it: th-deepstrict

Types of Space Leak

A space leak is when more memory is used than necessary?.
» Bounded by X: memory is kept until event X
» Unbounded: memory is never released

unbounded leak

Memory

bounded leak

necessary

Time

! eaking Space: Eliminating memory hogs, Neil Mitchell,-ACM-Queue 2013

Causes of Space Leaks

Space leaks can be caused by:
» Excessive laziness

» Inappropriate datatype usage, eg, Lists have a linear overhead,
Vector has a constant overhead.

» Function closures
» Stack usage
» And others!

Laziness

P Laziness means work is only done when demanded.

» This comes with a cost: deferred work must be represented
using a thunk. A thunk keeps alive all data needed to do the

work.

Example: an all too lazy sum

The classic space leak from laziness: a lazy left fold
foldl (+) 0 [1..1000]

Expectation: Constant
Reality: Linear

Example: an all too lazy sum

The solution is to use a strict left fold:
foldl' (+) 0 [1..1000]

Expectation: Constant
Reality: Constant

Example: a too clever average

Calculates average with just one traversal! But it has a space leak.

data State = State { sum :: Int, length :: Int }

step :: State -> Int -> State
step old x =
State { sum = sum old + x, length = length old + 1}

finish :: State -> Int
finish final = sum final “div" length final

finish $

foldl' step (State 0 0) [0..10000]
While the top-level State is evaluated, the values in the fields are
not.

Example: a clever average (solution)

Solution make the fields strict.
data State = State { sum :: !Int, length :: !Int }

Moral: the avoid of laziness you need deep strictness.
We want normal form not weak head normal form.

Unbounded leaks

» So far, we have only seen bounded space leaks.

> Let's look at an unbounded leak.

Unbounded leaks

Web server version, storing our original State in an IORef.

data State = State { sum :: Int, length :: Int }

main = do
ref <- newIORef (State 0 0)
let handleAdd x =
modifyIORef' ref (\old -> step old x)
let handleGetAverage =
readIORef ref >>= print . finish

Unbounded space leak.

Lazy and stateful

v

All of these examples are both lazy and stateful.

Stateful because we have a sequence of values computed
where the next is computed from the current.

Lazy because we don't fully evaluate evaluate the current
value.

Both are necessary for the space leak.
Laziness creates thunks.

Statefulness links them up into a chain.

Statefulness

Many forms of statefullness:
» Recursion, folds, loops, etc
» The State monad
> Mutable state I0Ref, MVar, TVar, etc

Stateful AND Lazy implies space leak

Stateful XOR Lazy

Abolish your state

» Stateful code should be kept to a minimum but is unavoidable.
> Externalize state in a database
> If you need state, make it as local as possible.

» Global state can lead to unbounded space leaks.

Stateful code should be deep strict

If code is necessarily stateful, then make it deep strict.

A datatype is deep strict iff:
» All fields of all constructors are strict.

> Types of all fields are deep strict.

th-deepstrict

Open-sourced by Tracsis
Non-trivial Template Haskell (upstreamed into th-abstraction)

>
>
» Recursively traverse your datatype and find lazy fields/types.
> Allows overriding inferred strictness of datatypes.

>

Supports golden/ratchet tests.

th-deepstrict: Example

> assertDeepStrict =<< [t|Statel]
Main.State
is not Deep Strict, because:
Main.State
con Main.State
field Main.sum is lazy
field Main.length is lazy

|
5 | assertDeepStrict =<< [t|Statel]

Packages for strict code

v

strict-wrapper by Tom Ellis
(See: Make Invalid Laziness Unrepresentable)

strict (strict Maybe, etc)
strict—-containers

Strict vector problem

Alternatives: deepseq

We can use rnf from the deepseq package.
Issues:

» Error prone: requires manual annotation.

> Expensive: must traverse entire datatype, O(n)

Alternatives: nothunks

nothunks by Edsko de Vries allows writing unit tests to check for
thunks.
Issues:

P> Requires test coverage: tough when state space is large.
» Isn't checked at compile-time.

» Great fit for data structures.

» Stateful XOR lazy
» Enforce this with th-deepstrict

	Introduction
	Space Leaks
	Excessive Laziness
	Stateful XOR Lazy
	Deep strict datatype
	th-deepstrict
	Conclusion

